Curvilinear Distance Analysis versus Isomap

نویسندگان

  • John Aldo Lee
  • Amaury Lendasse
  • Michel Verleysen
چکیده

Dimension reduction techniques are widely used for the analysis and visualization of complex sets of data. This paper compares two nonlinear projection methods: Isomap and Curvilinear Distance Analysis. Contrarily to the traditional linear PCA, these methods work like multidimensional scaling, by reproducing in the projection space the pairwise distances measured in the data space. They differ from the classical linear MDS by the metrics they use and by the way they build the mapping (algebraic or neural). While Isomap relies directly on the traditional MDS, CDA is based on a nonlinear variant of MDS, called CCA (Curvilinear Component Analysis). Although Isomap and CDA share the same metrics, the comparison highlights their respective strengths and weaknesses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis

Dimension reduction techniques are widely used for the analysis and visualization of complex sets of data. This paper compares two recently published methods for nonlinear projection: Isomap and Curvilinear Distance Analysis (CDA). Contrarily to the traditional linear PCA, these methods work like multidimensional scaling, by reproducing in the projection space the pairwise distances measured in...

متن کامل

Improved Isomap Algorithm for Motion Analysis

Euclidean distance, Hausdorff distance and SSP distance are discussed, and SSP distance is used to improve Isomap algorithm. Two methods are put forward for improving Isomap algorithm. One is aligning input data of original Isomap algorithm, the other is modifying Isomap algorithm itself. SSP distance is used to search neighbors and compose neighborhood graph, and the plot for each dimension of...

متن کامل

Extended Isomap for Classification

The Isomap method has demonstrated promising results in finding a low dimensional embedding from samples in the high dimensional input space. The crux of this method is to estimate geodesic distance with multidimensional scaling for dimensionality reduction. Since the Isomap method is developed based on the reconstruction principle, it may not be optimal from the classification viewpoint. We pr...

متن کامل

Kernel Isomap

Isomap [4] is a manifold learning algorithm, which extends classical multidimensional scaling (MDS) by considering approximate geodesic distance instead of Euclidean distance. The approximate geodesic distance matrix can be interpreted as a kernel matrix, which implies that Isomap can be solved by a kernel eigenvalue problem. However, the geodesic distance kernel matrix is not guaranteed to be ...

متن کامل

When do libraries of articulated images obey an isometric embedding?

in image understanding and image coding, it could be useful to ‘learn’ the structure of such image articulation manifolds and to recover the underlying parameters (location, scale, etc.) from unlabeled data. This could be important for recognizing articulated vehicles in target recognition, and for understanding articulated faces in facial recognition. The general problem of learning the shape ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002